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Abstract. Graph partitioning is an important and well studied problem in
combinatorial scientific computing, and is commonly used to reduce commu-
nication in parallel computing. Different models (graph, hypergraph) and
objectives (edge cut, boundary vertices) have been proposed. Hypergraph
partitioning has become increasingly popular over the last decade. Its main
strength is that it accurately captures communication volume, but it is slower
to compute than graph partitioning. We present an empirical study of the
Zoltan parallel hypergraph and graph (PHG) partitioner on graphs from the
10th DIMACS implementation challenge and some directed (nonsymmetric)
graphs. We show that hypergraph partitioning is superior to graph partition-
ing on directed graphs (nonsymmetric matrices), where the communication
volume is reduced in several cases by over an order of magnitude, but has no
significant benefit on undirected graphs (symmetric matrices) using current
parallel software tools.

1. Introduction

Graph partitioning is a well studied problem in combinatorial scientific com-
puting. An important application is the mapping of data and/or tasks on a parallel
computer, where the goals are to balance the load and to minimize communica-
tion [12]. There are several variations of graph partitioning, but they are all NP-
hard problems. Fortunately, good heuristic algorithms exist. Naturally, there is a
trade-off between run-time and solution quality. In parallel computing, partitioning
may be performed either once (static partitioning) or many times (dynamic load
balancing). In the latter case, it is crucial that the partitioning itself is fast. Fur-
thermore, the rapid growth of problem sizes in scientific computing dictates that
partitioning algorithms must be scalable. The multilevel approach developed in
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the 1990s [3, 11, 17] provides a good compromise between run-time (complexity)
and quality. Software packages based on this approach (Chaco [13], Metis [14],
and Scotch [19]) have been extremely successful. Even today, all the major paral-
lel software packages for partitioning in scientific computing (ParMetis [15], PT-
Scotch [20], and Zoltan [8, 9]) use variations of the multilevel graph partitioning
algorithm.

The 10th DIMACS implementation challenge offers an opportunity to evaluate
the current (2012) state-of-the-art in partitioning software. This is a daunting task,
as there are several variations of the partitioning problem (e.g., objectives), several
software codes, and a large number of data sets. In this paper we limit the scope
in the following ways: We only consider parallel software since our focus is high-
performance computing. We focus on the Zoltan toolkit since its partitioner can
be used to minimize either the edge cut (graph partitioning) or the communication
volume (hypergraph partitioning). We include some baseline comparisons with
ParMetis, since that is the most widely used parallel partitioning software. We
limit the experiments to a subset of the DIMACS graphs. One may view this paper
as a follow-up to the 2006 paper that introduced the Zoltan PHG partitioner [9].

Contributions: We compare graph and hypergraph partitioners for both sym-
metric and unsymmetric inputs and obtain results that are quite different than
in [4]. For nonsymmetric matrices we see a big difference in communication volume
(orders of magnitude), while there is virtually no difference among the partitioners
for symmetric matrices. We exercise Zoltan PHG on larger number of processors
than before (up to 1024). We present results for impact of partitioning on an it-
erative solver. We also include results for the maximum communication volume,
which is important in practice but not an objective directly modeled by any current
partitioner.

2. Models and Metrics

The term “graph partitioning” can refer to several different problems. Most
often, it refers to the edge cut metric, though in practice the communication volume
metric is often more important. For the latter objective, it is useful to extend graphs
to hypergraphs. Here, we review the different models and metrics and explain how
they relate.

2.1. Graph Models. Given an undirected graph G = (V,E), the classic ver-
sion of graph partitioning is to partition V into k disjoint subsets (parts) such that
all the parts are approximately the same size and the total number of edges between
parts are minimized. More formally, let Π = {π0, . . . , πk−1} be a balanced partition
such that

|V (πi)| ≤ (1 + ε)
|V |
k

∀i,(1)

for a given ε > 0. The edge cut problem (EC) is then to minimize the cut set

C(G, Π) = {{(u, v) ∈ E}|Π(u) 6= Π(v)} .(2)

There are straight-forward generalizations for edge weights (minimize weighted
cuts) and vertex weights (balance is weighted).

Most algorithms and software attempt to minimize the edge cut. However,
several authors have shown that the edge cut does not represent communication in
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parallel computing [4, 12]. A key insight was that the communication is propor-
tional to the vertices along the part boundaries, not the cut edges. A more relevant
metric is therefore the communication volume, which roughly corresponds to the
boundary vertices. Formally, let the communication volume for part p be

comm(πp) =
∑

v∈π(p)

(λ(v,Π)− 1) ,(3)

where λ(v,Π) denotes the number of parts that v or any of its neighbors belong to,
with respect to the partition Π.

We then obtain the following two metrics:

CVmax(G, Π) = max
p

comm(πp)(4)

CVsum(G, Π) =
∑

p

comm(πp)(5)

In parallel computing, this corresponds to the maximum communication volume
for any process and the total sum of communication volumes, respectively.

2.2. Hypergraph Models. A hypergraph H = (V,E) extends a graph since
now E denotes a set of hyperedges. An hyperedge is any non-empty subset of the
vertices V . A graph is just a special case of a hypergraph where each hyperedge
has cardinality two (since a graph edge always connects two vertices). Hyperedges
are sometimes called nets, a term commonly used in the (VLSI) circuit design
community.

Analogous to graph partitioning, one can define several hypergraph partitioning
problems. As before, the balance constraint is on the vertices. Several different cut
metrics have been proposed. The most straight-forward generalization of edge cut
to hypergraphs is:

C(H,Π) = {{e ∈ E}|Π(u) 6= Π(v) where u ∈ e, v ∈ e} .(6)

However, a more popular metric is the so-called (λ− 1) metric:

CV (H,Π) =
∑
e∈E

(λ(e,Π)− 1) ,(7)

where λ(e,Π) is the number of distinct parts that contain any vertex in e.
While graphs are restricted to structurally symmetric problems (undirected

graphs), hypergraphs make no such assumption. Furthermore, the number of ver-
tices and hyperedges may differ, making the model suitable for rectangular matrices.
The key advantage of the hypergraph model is that the hyperedge (λ−1) cut (CV)
accurately models the total communication volume. This was first observed in [4]
in the context of sparse matrix-vector multiplication. The limitations of the graph
model were described in detail in [12]. This realization led to a shift from the
graph model to the hypergraph model. Today, many partitioning packages use the
hypergraph model: PaToH [4], hMetis [16], Mondriaan [21], and Zoltan-PHG [9].

Hypergraphs are often used to represent sparse matrices. For example, using
row-based storage (CSR), each row becomes a vertex and each column becomes a
hyperedge. Other hypergraph models exist: in the “fine-grain” model, each non-
zero is a vertex [5]. For the DIMACS challenge, all input is symmetric and given
as undirected graphs. Given a graph G(V,E), we will use the following derived
hypergraph H(V,E′): for each vertex v ∈ V , create an hyperedge e ∈ E′ that
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contains v and all its neighbors. In this case, it is easy to see that CV (H,Π) =
CVsum(G, Π). Thus, we do not need to distinguish between communication volume
in the graph and hypergraph models.

2.3. Relevance of the Metrics. Most partitioners minimize either the total
edge cut (EC) or the total communication volume (CV-sum). A main reason for
this choice is that algorithms for these metrics are well developed. Less work has
been done to minimize the maximum communication volume (CV-max), though
in a parallel computing setting this may be more relevant as it corresponds to the
maximum communication for any one process.

In order to compare the three metrics and how they correspond to the actual
performance we use conjugate gradient (CG) iteration (from the Belos package [1])
as a test case. We used the matrices from the UF sparse matrix collection group of
the DIMACS challenge. As the goal is to compare the matrix-vector multiply time
in the CG iteration, we used no preconditioner as the performance characteristics
will be different depending on the preconditioners. As there is no preconditioner
and some of these problems are ill-conditioned the CG iteration might not converge
at all, so we report the solve time for 1000 iterations. We compare four different
row-based partitionings (on 12 processors): natural (block) partitioning, random
partitioning, graph partitioning with ParMetis, and hypergraph partitioning with
Zoltan hypergraph partitioner. We only change the data distribution, and do not
reorder the matrix, so the convergence of CG is not affected. The results are shown
in Table 1. As expected, random partitioning is worst since it just balances the
load but has high communication. In all but one case, we see that both graph
and hypergraph partitioning beat the simple natural (block) partitioning (which is
the default in Trilinos). For the audikw1 test matrix, the time is cut to less than
half. For these symmetric problems, the difference between graph and hypergraph
partitioning is very small in terms of real performance gains. We will show in Sec-
tion 4.2 that the partitioners actually differ in terms of the measured performance
metrics for three of the problems shown in Table 1. However, the difference in the
metrics do not translate to measurable real performance gain in the time for the
matrix-vector multiply.

Table 1. Solve time (seconds) for 1000 iterations of CG for dif-
ferent row partitioning options.

Matrix Name Natural Random ParMetis Zoltan PHG

audikw1 62.90 98.58 27.71 27.52
ldoor 22.18 72.09 18.24 18.08

G3 circuit 11.26 25.78 8.13 8.62
af shell10 20.09 84.51 21.29 21.17
bone010 24.33 84.07 24.92 25.39
geo 1438 25.35 106.36 25.53 25.78
inline 1 22.47 44.57 13.54 13.90
pwtk 4.30 11.88 4.34 4.37
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]
hyperedges

Figure 1. Example of the 2D layout for 2× 3 processes.

3. Overview of the Zoltan Hypergraph Partitioner

Zoltan was originally designed as a toolkit for dynamic load-balancing [8]. It in-
cluded several geometric partitioning algorithms, plus interfaces to external (third-
party) graph partitioners, such as ParMetis. Later, a native parallel hypergraph
partitioner (PHG) was developed [9] and added to Zoltan. While PHG was de-
signed for hypergraph partitioning, it can also be used for graph partitioning but
it is not optimized for this use case. (Note: “PHG” now stands for Parallel Hyper-
graph and Graph partitioner.) Zoltan also supports other combinatorial problems
such as graph ordering and graph coloring [2].

Zoltan PHG is a parallel multilevel partitioner, consisting of the usual coars-
ening, initial partitioning, and refinement phases. The algorithm is similar to the
serial partitioners PaToH [4], hMetis [16] and Mondriaan [21], but Zoltan PHG is
parallel (based on MPI) so can run on both shared-memory and distributed-memory
systems. Note that Zoltan can partition data into k parts using p processes, where
k 6= p. Neither k nor p need be powers of two. We briefly describe the algorithm in
Zoltan PHG, with emphasis on the parallel computing aspects. For further details
on PHG, we refer to [9]. The basic algorithm remains the same, though several
improvements have been made over the years.

3.1. 2D Data Distribution. A novel feature of Zoltan PHG is that inter-
nally, the hypergraph is mapped to processes in a 2D block (checkerboard) fashion.
That is, the processes are logically mapped to a px by py grid, where p = pxpy.
The hypergraph is partitioned accordingly, when viewed as a sparse matrix (Fig. 1).
We do not attempt an optimal 2D Cartesian (checkerboard) distribution: The best
known algorithm requires multiconstraint hypergraph partitioning [6], which is even
harder than the partitioning problem we wish to solve.

The goal of this design is to reduce communication within the partitioner itself.
Instead of expensive all-to-all or any-to-any communication, all communication is
limited to process rows or columns. Thus, the collective communication is limited
to communicators of size px or py, which is O(

√
p) for squarish configurations. The

drawback of this design is that there are more synchronization points than if an
1D distribution had been used. Furthermore, neither vertices nor hyperedges have
unique owners, but are spread over multiple processes. This made the 2D parallel
implementation quite complex and challenging. 2D data distributions have recently
been used in several applications, such as sparse matrix-vector multiplication in
eigensolvers [22]. SpMV is a fairly simple kernel to parallelize. 2D distributions
are still rarely used in graph algorithms, probably due to the complexity of imple-
mentation and the lack of payoff for small numbers of processors.

3.2. Coarsening. The coarsening phase approximates the original hypergraph
via a succession of smaller hypergraphs. When the smallest hypergraph has fewer
vertices than some threshold (e.g., 100), the coarsening stops. Several methods have



6 SIVASANKARAN RAJAMANICKAM AND ERIK G. BOMAN

been proposed for constructing coarser representations of graphs and hypergraphs.
The most popular methods merge pairs of vertices, but one can also aggregate
more than two vertices at a time. Intuitively, we wish to merge vertices that are
similar and therefore more likely to be in the same partition in a good partition-
ing. Catalyurek and Aykanat [4] suggested a heavy-connectivity matching, which
measures a similarity metric between pairs of vertices. Their preferred similarity
metric, which was also adopted by hMETIS [16] and Mondriaan [21], is known as
the inner product or simply, heavy connectivity. The inner product between two
vertices is defined as the Euclidean inner product between their binary hyperedge
incidence vectors, that is, the number of hyperedges they have in common. (Edge
weights can be incorporated in a straight-forward way.) Zoltan PHG also uses the
heavy-connectivity (inner-product) metric in the coarsening. Originally only pairs
of vertices were merged (matched) but later vertex aggregation (clustering) that
allows more than two vertices to be merged was made the default as it produces
slightly better results.

Previous work have shown that greedy strategies work well in practice so op-
timal matching based on similarity scores (inner products) is not necessary. The
sequential greedy algorithm works as follows. Pick a (random) unmatched vertex
v. For each unmatched neighbor vertex u, compute the inner product < v, u >.
Select the vertex with the highest non-zero inner product value and match it with
v. Repeat until all vertices have been considered. If we consider the hypergraph as
a sparse matrix A, we essentially need to compute the matrix product AT A. We
can use the sparsity of A to compute only entries of AT A that may be nonzero.
Since we use a greedy strategy, we save work and compute only a subset of the
nonzero entries in AT A. This strategy has been used (successfully) in several serial
partitioners.

With Zoltan’s 2D data layout, this fairly simple algorithm becomes much more
complicated. Each processor knows about only a subset of the vertices and the
hyperedges. Computing the inner products requires communication. Even if A
is typically very sparse, AT A may be fairly dense. Therefore we cannot compute
all of AT A at once, but instead compute parts of it in separate rounds. In each
round, each processor selects a (random) subset of its vertices that we call candi-
dates. These candidates are broadcast to all other processors in the processor row.
This requires horizontal communication in the 2D layout. Each processor then
computes the inner products between its local vertices and the external candidates
received. Note that these inner products are only partial inner products; vertical
communication along processor columns is required to obtain the full (global) inner
products. One could let a single processor within a column accumulate these full
inner products, but this processor may run out of memory. So to improve load
balance, we accumulate inner products in a distributed way, where each processor
is responsible for a subset of the vertices.

At this point, the potential matches in a processor column are sent to the
master row of processors (row 0). The master row first greedily decides the best
local vertex for each candidate. These local vertices are then locked, meaning they
can match only to the desired candidate (in this round). This locking prevents
conflicts between candidates, which could otherwise occur when the same local
vertex is the best match for several candidates. Horizontal communication along
the master row is used to find the best global match for each candidate. Due to



PARALLEL PARTITIONING WITH ZOLTAN: IS HYPERGRAPH PARTITIONING WORTH IT?7

our locking scheme, the desired vertex for each match is guaranteed to be available
so no conflicts arise between vertices. The full algorithm is given in [9].

Observe that the full heavy connectivity matching is computationally intensive
and requires several communication phases along both processor rows and columns.
Empirically, we observed that the matching usually takes more time than the other
parts of the algorithm. Potentially, one could save substantial time in the coarsening
phase by using a cheaper heuristic that gives preference to local data. We have
experimented with several such strategies, but the faster run time comes at the
expense of the partitioning quality. Therefore, the default in Zoltan PHG is heavy
connectivity aggregation, which was also used in our experiments.

After the matching or aggregation has been computed, we build the coarser
hypergraph by merging matched vertices. Note that hyperedges are not contracted,
leading to unsymmetry. The matrix corresponding to the hypergraph becomes more
rectangular at every level of coarsening. The number of hyperedges is only reduced
in two ways: (a) hyperedges that become internal to a coarse vertex are simply
deleted, and (b) identical hyperedges are collapsed into a single hyperedge with
adjusted weight.

3.3. Initial Partitioning. The coarsening stops when the hypergraph is smaller
than a certain threshold. Since the coarsest hypergraph is small, we replicate it on
every process. Each processor runs a randomized greedy algorithm to compute a
different partitioning. We then evaluate the desired cut metric on each processor
and pick the globally best partitioning, which is broadcast to all processes.

3.4. Refinement. The refinement phase takes a partition assignment pro-
jected from a coarser hypergraph and improves it using a local optimization method.
The most successful refinement methods are variations of Kernighan–Lin (KL) [18]
and Fiduccia–Mattheyses (FM) [10]. These are iterative methods that move (or
swap) vertices from one partition to another based on gain values, that is, how
much the cut weight decreases by the move. While greedy algorithms are often
preferred in parallel because they are simpler and faster, they generally do not
produce partition quality as good as KL/FM. Thus, Zoltan PHG uses an FM-like
approach but made some changes to accomodate the 2D data layout.

Since Zoltan PHG uses recursive bisection, only two-way refinement is needed.
The main challenge with the 2D layout is that each vertex is shared among several
processes, making it difficult to compute gain values and also to decide which
moves to actually perform (as processes may have conflicting local information).
The strategy used in PHG is a compromise between staying faithful to the FM
algorithm and accomodating more concurrency in the 2D parallel setting. See
[9] for further details. Although the refinement in PHG works well on moderate
number of processors, the quality will degrade for very large number of processes.

3.5. Recursive Bisection. Zoltan PHG uses recursive bisection to partition
into k parts. Note that k can be any integer greater than one, and does not need
to be a power of two. Also, Zoltan can run on p processes, where k 6= p. However,
the typical use case is k = p.

An important design choice in the recursive bisection is whether the data is
left in-place or moved onto separate subsets of processors. The first approach
avoids some data movement but the latter reduces communication in the partitioner
and allows more parallelism. Initial experiments indicated that moving the data
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and splitting into independent subproblems gave better performance, so this is the
default in Zoltan PHG.

3.6. PHG as a Graph Partitioner. PHG was designed as a hypergraph
partitioner but can also do graph partitioning since a graph is just a special case
of a hypergraph. When PHG is used as a graph partitioner, each hyperedge is
of size two. When we coarsen the hypergraph, only vertices are coarsened, not
hyperedges. This means that the symmetry of graphs is destroyed already after
the first level of coarsening. We conjecture that PHG is not particularly efficient
as a graph partitioner because it does not take advantage of the special structure
of graphs (in particular, symmetry and constant size hyperedges). Still, we believe
it is interesting (and fair) to compare PHG as a graph partitioner because it uses
exactly the same code as the hypergraph partitioner, so any performance difference
is due to the model not the implementation.

4. Experiments

4.1. Software, Platform, and Data. Our primary goal is to study the be-
havior of Zoltan PHG as a graph and a hypergraph partitioner, using different
objectives and a range of data sets. We use Zoltan 3.5 (Trilinos 10.8) and ParMetis
4.0 as a reference for all the tests. The compute platform was mainly Hopper, a
Cray XE6 at NERSC. Hopper has 6,384 compute nodes, each with 24 cores (two
12-core AMD MagnyCours) and 32 GB of memory. The graphs for the tests are
from five test families of the DIMACS collection that are relevant to the compu-
tational problems we have encountered at Sandia. Within each family, we selected
some of the largest graphs that were not too similar. In addition we picked four
other graphs, two each from the street networks and clustering instances (which
also happened to be road networks), to compile our diverse 22 test problems.

The graphs are partitioned into 16, 64, 256, and 1024 parts. In the paral-
lel computing context, this covers everything from a multicore workstation to a
medium-sized parallel computer. Except where stated otherwise, the partitioner
had the same number of MPI ranks as the target number of parts.

Zoltan uses randomization, so results may vary slightly from run to run. How-
ever, for large graphs, the random variation is relatively small. Due to limited
compute time on Hopper, each partitioning test was run only once. Even with the
randomization, it is fair to draw conlusions based on several data sets, though one
should be cautious about overinterpreting any single data point.

4.2. Zoltan vs. ParMetis. In this section, we compare Zoltan’s graph and
hypergraph partitioning with ParMetis’s graph partitioning. We partition the
graphs into 256 parts with 256 MPI processes. The performance profile of the
three metrics – total edge cut (EC), the maximum communication volume (CV-
max) and the total communication volume (CV-sum) – for the 22 matrices is shown
in Figure 2.

The main advantage of the hypergraph partitioners is the ability to handle un-
symmetric problems and to reduce the communication volume for such problems
directly (without symmetrizing the problems). However, all the 22 problems used
for the comparisons in Figure 2 are symmetric problems from the DIMACS chal-
lenge set. We take this opportunity to compare graph and hypergraph partitioners
even for symmetric problems.
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(a) Edge Cut (b) Communication Volume (Max)

(c) Communication Volume (Sum)

Figure 2. Zoltan Vs Parmetis: Comparing Zoltan’s partition-
ing with graph and hypergraph model with Parmetis for symmetric
problems for 256 parts and 256 MPI processes.

In terms of the edge cut metric ParMetis does better than Zoltan for 20 of
the matrices and Zoltan’s graph model does better for just two matrices. However,
Zoltan’s graph model is within 15% of ParMetis’s edge cuts for 82% of the problems
(see Figure 2(a)). The four problems that cause trouble to Zoltan’s graph model
are the problems from the street networks and clustering instances.

In terms of the CV-sum metric Zoltan’s partitioning with the hypergraph
model, is able to do better than Zoltan’s graph model in all the instances, and
is better than ParMetis for 33% of the problems, and is within 6% or better of CV-
sum of the ParMetis for another 44% of the problems (see Figure 2(c)). Again the
street networks and the clustering instances are the ones that cause problems for
the hypergraph partitioning. In terms of the CV-max metric Zoltan’s hypergraph
partitioning is better than the other two methods for 27% of the problems, and
within 15% of the CV-max for another 42% of the problems (see Figure 2(b)).

From our results, we can see that even for symmetric problems hypergraph
partitioners can perform nearly as well as (or even better than) the graph parti-
tioners depending on the problems and the metrics one cares about. We also note
that three of these 22 instances (af shell10, audikw1 and G3 circuit) come from the
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same problems we used in Section 2.3 and Zoltan does better in one problem and
ParMetis does better on other two problems in terms of the CV-max metric. In
terms of EC metric ParMetis does better for all these four problems. However, as
we can see from Table 1 the actual solution time is slightly better when we use
the hypergraph partitioning for the three problems irrespective of which method is
better in terms of the metrics we compute. To be precise, we should again note
that the differences in actual solve time between graph and hypergraph partitioning
are minor for those three problems. We would like to emphasize that we are not
able to observe any difference in the performance of the actual application when
the difference in the metrics is a small percentage. We study the characteristics of
Zoltan’s graph and hypergraph partitioning in the rest of this paper.

Figure 3. Comparing Zoltan’s quality metrics with graph and
hypergraph models for 16 and 1024 parts.

(a) (b)

Figure 4. Comparing Zoltan’s partitioning with graph and hy-
pergraph (HG) model quality metrics for different part sizes.
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(a) (b)

Figure 5. Comparing Zoltan’s partitioning with graph and hy-
pergraph (HG) model quality metrics for different part sizes.

4.3. Zoltan Graph vs. Hypergraph model. We did more extensive exper-
iments on the symmetric problems with the graph and hypergraph partitioning of
Zoltan. For each of the test problems from we compute the three metrics (EC, CV-
max, CV-sum) for part sizes 16, 1024. All the experiments use the same number of
MPI processes as the part sizes. Figure 3 shows the three metrics for hypergraph
partitioning normalized to graph partitioner results for both 16 and 1024 parts.
The results show that based on the EC metric, Zoltan’s graph partitioning is the
best for most problems. In terms of the CV-sum metric the hypergraph partitioning
fares better. Neither of the algorithms optimize, CV-max metric and as expected
the results are mixed for this metric. The results for 64 and 256 parts were not
different from the results presented in Figure 3 and are not presented here.

Figure 4 shows the change in the partitioning quality with respect to the three
metrics for both graph and hypergraph partitionings for two problems – cage15 and
hugetrace-0020. The metrics are normalized with respect to the values for the 16
parts case in these figures. These results are for the “good” problems and from
the results we can see why we call these problems the “good” problems – EC and
CV-sum go up by a factor of 3.5 to 4.5 when going from 16 parts to 1024 parts. In
contrast, we also show the change in the metrics from one problem from the street
networks and clustering set each (road central and asia.osm) in Figure 5. Note
that for the some of these problems the metrics scale with similar values that the
lines overlap in the graph. These second set of problems are challenging for both
our graph and hypergraph partitioners as EC and CV-max go up by a factor 60-70
going from 16-1024 processes (for road central). The changes in these values are
mainly because of the structure of the graphs.

4.4. Zoltan scalability. Many of Zoltan’s users use Zoltan within their par-
allel applications dynamically, where the number of parts equals the number of
MPI processes. As a result it is important for Zoltan to have a scalable parallel
hypergraph partitioner. We have made several improvements within Zoltan over
the past few years and we evaluate our parallel scalabilty for the DIMACS problems
instances in this section. Note that having a parallel hypegraph partitioner also
enables us to solve large problems that does not fit into the memory of a compute
node. However, we were able to partition all the DIMACS instances except the
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matrix europe.osm with 16 cores. We omit the europe.osm matrix and three small
matrices from the Walshaw group that get partitioned within two seconds even with
16 cores, from these tests. The scalability results for the rest of the 18 matrices are
shown in Figure 6. We normalize the time for all the runs with time to compute
16 parts. Note that even though the matrix size remains the same, this is not a
traditional strong scaling test as the number of parts increases linearly with the
number of MPI processes. Since the work for the partitioner grows, it is unclear
what “perfect scaling” would be, but we believe this is a reasonable experiment as
it reflects a typical use case.

Even with the increase in the amount of work for large matrices like cage15
and hugebubbles-0020 we see performance improvements as we go to 1024 MPI
processes. However, for smaller problems like the auto or m14b the performance
remains flat (or degrades) as we go from 256 MPI processes to 1024 MPI processes.

The scalability of Zoltan’s graph partitioners is shown in Figure 7. We see
that the graph partitioner tends to scale well for most problems. Surprisingly, the
PHG hypergraph partitioner is faster than our graph partitioner in terms of actual
execution time for several of the problems. This may in part be due to the fact that
there are only n hyperedges in the hypergraph model compared to m edges in the
graph model. Recall that PHG treats graphs as hypergraphs, without exploiting
the special structure.

Figure 6. Scalability of Zoltan Hypergraph Partitioning time
for DIMACS challenge matrices normalized to the time for 16 MPI
processes and 16 parts.

4.5. Partitioning on a single node to improve quality. As discussed
before, Zoltan can compute a partitioning statically with different number of MPI
processes than number of parts. One strategy to obtain better partitioning quality
is therefore to partition for p parts on k cores, where k < p. This often results
in better quality than the dynamic approach where k = p. However, the users
have to retain the partition in this case for future use. We evaluate this case
for the symmetric matrices from the DIMACS collection for just the hypergraph
partitioning. We compute 1024 parts with 24 MPI processes. The assumption is
that the user will be willing to devote one compute node to compute the partition



PARALLEL PARTITIONING WITH ZOLTAN: IS HYPERGRAPH PARTITIONING WORTH IT?13

Figure 7. Scalability of Zoltan Graph Partitioning time for DI-
MACS challenge matrices normalized to the time for 16 MPI pro-
cesses and 16 parts.

Figure 8. Improvement in the partitioning quality when com-
puting 1024 parts with 24 MPI ranks instead of 1024 MPI ranks.

he needs. The results of these experiments for the 22 DIMACS graphs in Figure 8.
On an average the edge cuts gets reduced by 10% and the CV-sum gets reduced
by 4% when partitioners 1024 parts with just 24 MPI processes instead of using
the 1024 MPI processes. This confirms our conjecture that using fewer cores (MPI
processes) gives higher quality results, and raises the possibility of using shared-
memory techniques to improve the quality in the future.

4.6. Nonsymmetric Data (Directed Graphs). The 10th DIMACS imple-
mentation challenge includes only undirected graphs, corresponding to structurally
symmetric matrices. This clearly favors graph partitioners. Many real-world prob-
lems are nonsymmetric, e.g., web link graphs, term-by-document matrices, and
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circuit simulation. For such applications, it is well known in the partitioning com-
munity that it is better to work directly on the original (nonsymmetric) prob-
lem [4, 12]. Remarkably, applications people who are not experts still overwhelm-
ingly use a graph partitioner with symmetrization (A+AT or AT A) and apply the
result to the original unsymmetric problem. The difference in terms of the commu-
nication volume is presumed to be small. We compare hypergraph partitioning on
A against graph partitioning on the symmetrized graph/matrix. We measure the
communication volume on the original nonsymmetric problem, since this typically
corresponds to the communication cost for the user and show order of magnitudes
difference. For these experiments we partitioned the matrix rows, but results for
column partitioning were similar.

These experiments were run on a 12-core workstation. We ran Zoltan on 12
MPI processes and partitioned into 12 parts. The test matrices were taken from the
UF collection [7], and vary in their degree of symmetry from 0 to 95%. We see from
Table 2 that hypergraph partitioning directly on A gives communication volume at
least one order of magnitude smaller than graph partitioning on the symmetrized
version in half the test cases. This is substantially different from the 30 − 38%
average reduction observed in [4]. We arranged the matrices in decreasing degree
of symmetry. Observe that hypergraph partitioning performs relatively better on
the highly nonsymmetric matrices. Also note that there is essentially no difference
in quality between Zoltan PHG as a graph partitioner and ParMetis for these cases.
We conjecture the difference is neglible because the error made in the model by
symmetrizing the matrix is far greater than differences in the implementation.

Note that some of the problems in the 22 symmetric test problems were origi-
nally unsymmetric problems (like citeseer and DBLP data) but were symmetrized
for graph partitioning. We do not have the unsymmetric versions of these problems
so we could not use those here.

Table 2. Comparison of communication volume (CV-sum) for
nonsymmetric and the corresponding symmetrized matrices.PHG
was used as hypergraph partitioner on A and as a graph partitioner
on Asym ≡ (A + AT )

Matrix dim. avg. deg. symmetry PHG PHG ParMetis
(×103) on A on Asym on Asym

torso3 259 17.1 95% 27,083 48,034 51,193
stomach 213 14.2 85% 15,128 20,742 21,619
rajat21 411 4.6 76% 112,273 174,717 158,296
amazon0312 400 8.0 53% 81,957 846,011 851,793
web-stanford 281 8.2 28% 2,307 543,446 543,547
twotone 120 9.9 24% 6,364 19,771 20,145
wiki-Talk 2,394 2.1 14% 0 53,009 –
hamrle3 1,447 3.8 0% 18,748 1,446,541 1,447,388

5. Conclusions

We have evaluated the parallel performance of Zoltan PHG, both as a graph and
hypergraph partitioner on test graphs from the DIMACS challenge data set. We
also made comparisons to ParMetis, a popular graph partitioner. We observed that
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ParMetis consistently obtained best edge cut (EC), as we expected. Surprisingly,
ParMetis also obtained lower communication volume (CV) in lot of the symmetric
problems. This raises the question: Is hypergraph partitioning worth it? A key
advantage of hypergraph partitioning is that it accurately minimizes communication
volume [4, 12]. It appears that the superiority of the hypergraph model is not
reflected in current software. We believe that one reason Zoltan PHG does relatively
poorly on undirected graphs, is that symmetry is not preserved during coarsening,
unlike graph partitioners. Future research should consider hypergraph partitioners
with symmetric coarsening, to try combine the best of both methods.

We further showed that hypergraph partitioners are superior to graph parti-
tioners on nonsymmetric data. The reduction in communication volume can be one
or two orders of magnitude. This is a much larger difference than previously ob-
served. This may in part be due to the selection of data sets, which included some
new areas such as weblink matrices. A common approach today is to symmetrize
a nonsymmetric matrix and partition A + AT . We demonstrated this is often a
poor approach, and with the availability of the PHG parallel hypergraph parti-
tioner in Zoltan, we believe many applications could benefit from using hypergraph
partitioners without any symmetrization.

Our results confirm that it is important to use a hypergraph partitioner on
directed graphs (nonsymmetric matrices). However, for naturally undirected graphs
(symmetric matrices) graph partitioners perform better. If a single partitioner for
all cases is desired, then Zoltan-PHG is a reasonable universal partitioner.
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